Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing
نویسندگان
چکیده
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements.
منابع مشابه
A Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملCompressed Sensing Application For Sparse Array Radar
Based on the sparsity of scene (moving target and few scatterers on the same resolution cell), MTD and 3D imaging are investigated by means of compressed sensing (CS) for airship sparse array radar and airborne three-aperture MMW SAR. Based on the sparsity of continuous scene sparse spectrum, sidelooking 3D imaging is investigated by means of CS for airborne cross-track sparse array SAR. Some s...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملRobust Estimation versus Optimal Estimation and Their Application for Airborne Gravimetry
The efficiency of the robust estimation approach based on the information about the variances of the signal itself and its several derivatives is analyzed. Comprehensive comparison of robust and optimal estimators is performed. It is shown that the robust estimator suggested provides the reliable and precise signal estimation in the presence of noise. The obtained theoretical results are illust...
متن کاملAdaptive Clutter Suppression for Airborne Random Pulse Repetition Interval Radar Based on Compressed Sensing
We present an adaptive clutter suppression method for airborne random pulse repetition interval radar by using prior knowledge of clutter boundary in Doppler spectrum. In this method, by exploiting the intrinsic sparsity, compressed sensing based on iterative grid optimization (CS-IGO) is applied to directly recover the clutter spectrum with only the test range cell instead of nonhomogeneous tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014